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INTRODUCTION 
Many discussions have been contributed to the subject of mathematical modeling of two-phase 
flow (e.g. Gidaspow 1974). General formulations of multiphase systems have been presented (e.g. 
Soo 1967); however, the interest in generality tends to obscure the essentials for describing the 
interactions in two-phase systems. It appears desirable to examine the simple case of 
one-dimensional adiabatic motion of a single component, two-phase system such as a 
steam-water mixture. Interactions with the boundary are not included here for the sake of 
simplicity. Flow regimes may include suspensions of droplets or bubbles, slugs, or layers with 
identifiable average characteristics. 

INTRAPHASE RELATIONS 

Within each phase (1, 2), the continuity equation can be written as 

a p~+a_~_~=f, [1] 
Ot Ox 

where t is time; x, the space coordinate; ~1, r'l, density of material constituting phase 1 and the 
source (or sink) in that phase; and ul, the mean velocity of phase 1. The momentum equation of 

phase 1 is then 

_ dUl _ Oul _ Ou...2=_O__P+In+ ~'12 [2] 
P'-d'i~l = P " ~  -+ p'ul OX ax 

where P is the pressure of the system; [12, the inertial interaction force exerted on phase 1 by 
phase 2; and "~n, the corresponding viscous interaction force. 712 includes the effect of phase 
change (source or sink) and that of virtual mass. Validity of [I] and [2] calls for consideration of a 
continuous domain of phase I, which may consist of slugs or droplets; the details can be 
accounted for in the boundary conditions. 

Equations [I] and [2] are applicable to all the regimes of the mixture of phases; for example, P 
is the pressure in each phase in annular flow and is the pressure in the vapor bubble and the inside 
of the liquid droplets in a droplet suspension. For the sake of simplicity, field forces and capillarity 
are neglected in the present formulation. It is understood that correction may be needed when 
small radius of curvature exists. 

INTERPHASE RELATIONS 

When converted to treating the behaviors of a phase in a mixture of volume fractions ¢bl, ~2 of 
the phases ( ~  + ~: = 1), the density of phase 1 in the mixture is p~ = ~bl~, [2] can be rewritten as: 

- -  ~x +112+V12 P l ' ~ I  = P 1 " ~ + P ' U l  OX - w, 
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[3] 

79 



80 S. L SO0 

and 

l,z = ~ , [ r , ,  V,2 = ~,  Q,2. [4] 

Therefore, consistent treatment of all two-phase systems requires that each phase is subject to its 
partial gradient of pressure (/plOP/Ox) rather than gradient of partial pressure (P~ = ~ P ) .  This 
condition was not obvious when the derivation proceeded from a homogeneous mixture alone 
(See 1967). 

The continuity equation of phase 1 in the mixture is given by 

Op,+ Op~ul = F, [5] 
Ot Ox 

where FI is the generation rate of phase 1 per unit volume of the mixture, and for the mixture, 
where I'~ + F, = 0 and we shall denote Fi =-I '2  = F. Comparing [5] to [I] gives 

r ,  = 1" _ ~ d O ,  
~1 d, dt," [63 

Hence, FI includes an apparent source due to variation in ~1. Adding F, to a corresponding 
relation for Fe shows that FI + F: # 0. 

I N T E R A C T I O N  FORCES 

The above quantities (I 's  and V's) can be determined from considering the basic relations of 
the mixture (subscript m) by 

Op,,, 
+ ~ = O, 

Ot 

du.. _ Ou. + Ou.. OP 

p,.-dU-p.,--~- p.um ox =-T ;  

[7] 

IS] 

where Or. = p, + p: and pr.U. = p~Ul +p2ue. The virtual mass effect does not enter the overall 
momentum equation because action and reaction of the phases cancel. Comparison to [3] and the 
corresponding relation for phase 2 gives the inertial interaction forces per unit volume of the 
mixture: 

112 = ~ 112 = - 01 p2(Ul - u:)F+ (ul - u:) ~ [9] 

=a- =--a--(..-.,)r+4r oxL ' ] I2, fi212, l -U,)  2 [101 

and the viscous interaction forces: 

and 

V,2 = (0,1~,) 9 , ,  = p,F, ,(u2 - u,). 

V~, = ( m l # , )  95, = p , F : , ( u ,  - us), 

[11] 

[12] 

plFl2 = p2F21 [ 13] 

where F,2 is the inverse relaxation time of momentum transfer from phase 2 to phase 1; F is 
known for spherical droplets, for instance, but remains to be an empirical constant for many 
other multiphas¢ regimes. With the above forces, adding [3] to the corresponding relation for 
phase 2 gives [8]. 
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In [9], the first term on the R.H.S. represents the inertial e~ect: when a given mass in phase 2 
is converted to phase 1, its velocity must be brought from us to u,. The second term is the inertial 
force arising from the continuity of the phase boundary, or the force due to reduced or virtual 
~ass of species 2 acting on species 1. This virtual mass might be referred to as a thermodynamic 
~r continuum virtual mass of a two-phase mixture. Derivation from hydrodynamics on specific 
:onfiguration such as a sphere 2 in a fluid 1 (Basset 1887) gives ~pt(dldt)(ut - u,) per unit volume of 
~he sphere. Note that I 's  vanish when the species are not converted and for small relative motion. 

Different from [1] and [2], [3] and [4] are applicable to an identifiable regime of phase 1 
~ingled with phase 2. Application of [3] and [4] to a monodispersed system is directly 
:onceivable. Their application to slugs and layers calls for averaging over a representative regime 
~r going back to [1] and [2] with proper boundary conditions, but [9] and [10] will not be directly 
~pplicable. 

Note that, when p~ ~. p,, such as in a steam (1)-water (2) mixture with a small volume fraction 
~f bubbles, we have 

- (u,  - u2)r +-~x[p,(u, I,: 

that is, the inertial e~ect has a greater influence on steam than on water and I=, < 1,2; I2~ is then 
negligible. However, in the case of a dilute suspension of mist, p2 < p,, the reverse of the above is 
true. 

The sum of [3] and that for phase 2 can be expressed as 

pl"~ p2"~2 l~u,-  oxLp,*p: =-~'x=P'dt." [14] 

The third ana fourth terms on the L.H.S. were neglected in many earlier studies, but they are not 
negligible when there is phase change and when the relative velocity between the phases is large. 
Alternately, the momentum equation of each phase can be expressed in the form 

ap,u~ ao,u,'_ p,u, + p2u. F_ (u, - u2)" = - ~ aP 
at + 'Ox p,+p., LLo p2) :,~-~+O,F,=(U=-U,). [15] 

Adding [15] to a corresponding form for phase 2 gives 

a O, : + 2 a r ~_E~L" us)=] : _ OP 
+ psu2) + (p,u, psu  Lp, + ps (ul - ox" [16] 

The third term on the L.H.S. arises again because of the change of frame of reference. Note that 
the quantities under the derivative signs in the second and third terms on the L.H.S. combine to 
give (plu, + p2u2)~/(p, + p2); hence, [16] reduces to 

ap,.u,. + O~u,." OP 
Ot Ox = - 0"~ [17] 

vhich can also be obtained by combining [7] and [8]. 

ENERGY EQUATIONS 

Excluding heat source and dissipation in our example, the energy equation of adiabatic flow of 
he mixture can be expressed as 

dE.  OE, + OF~ ou,.P 
p,."~=p,~"~ p.u,. Ox = Ox [18] 
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where the R.H.S. gives the work done by the displacement under pressure P, the energy E 
represents U + u2/2, U being the internal energy, and p.~E, = p~E~ + p2E2. The energy equation 
of phase 1 in the mixture is now 

_.£z_ , - , - "  - < , r  
p, ~ = -01 ~ + O, 7x I.p, + p2 .J LP, P, 

+ c,p,O,2(T2 - Tt) {19] 

where Gt2 is the relaxation time for energy transfer from phase 2 to phase 1, and 
clptGI2 = c2p,G21, c is the specific heat and T is the temperature. On the R,H,S. of [19], the first 
term is the rate of work done by phase I per unit volume, the second term is that done by phase 2 
on phase 1, the third term is the energy removed by phase change, the fourth i s the energy input 
by relative motion, and the last term is the energy transferred by heat flow. The second and third 
terms constitute the virtual mass effect of species 2 on species 1. Hence, these terms are 
counterparts of the terms in [,3] for momentum transfer. The intraphase energy equation is 
correspondingly given by 151 dEJdt~. Note again that the work done by phase 1 is by pressure P 
instead of its partial pressure P~. 

Adding [19] to a corresponding relation for phase 2 gives 

dE,+ dE2 . -  a.[ p~p: (u,_u,)(E,_E2)]= OumP P~"~ P2"~2 + F( l~'~ - E2)-Ox Lp~+p2 Ox [20] 

showing the difference between p,(dE,Idtl)+ p2(dE21dt2) and p, (dE,, Idt,,). Combining [20] with 
the continuity equation, [15]; and that for phase 2 gives 

-~t (P,EL + 92E2) + ~-~ [(p,u,E, + p 2 u z E 2 ) - ~ ( u ,  - u2)(E, - E2)] 

a (p.E.) + a .  ~ . a u . J '  

. . . .  at ~p.u.~.~ . . . . . . . . . .  ax 
[21] 

which is also given by combining [18] with the continuity equation. 
This exploration of intra- and interphase relations was made because of an interest in the 

nature of the equations of phases of a monodispersed system which appear to be improperly 
posed (Gidaspow 1974). The equations become well-posed when the effect of force due to 
pressure gradient is counteracted by the change in the viscous force on a sphere due to 
acceleration of the fluid (See 1975). This is not surprising because the virtual mass is also affected 
by the viscosity of the fluid (Basset 1887). 

The above relations are applicable to suspensions of identifiable average characteristics or a 
quasi-continuum regime. Even though the intraphase relations are applicable to a slug or a layer, 
the above inertial interaction force and the viscous interaction force of continuum are not valid 
and have to be replaced by specific boundary conditions. 
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